Aufbau einer Testanlage für PV-Wechselrichter bis 60kW

Teil 2: Ergebnisse der Wechselrichtertests

Verfasst von

Ch. Liebi, H. Häberlin und Ch. Beutler
Ingenieurschule Burgdorf
Jlicoweg 1
3400 Burgdorf

Im Auftrag des

Bundesamtes für Energiewirtschaft

Januar 1997

Schlussbericht DIS 2744
Forschungsprogramm Photovoltaik

Aufbau einer Testanlage für PV-Wechselrichter bis 60kW

Teil 2: Ergebnisse der Wechselrichtertests

Verfasst von
Ch. Liebi, H. Häberlin und Ch. Beutler
Ingenieurschule Burgdorf
Jicoweg 1
3400 Burgdorf

Im Auftrag des
Bundesamtes für Energiewirtschaft

Januar 1997
Inhaltsverzeichnis

1 Wechselrichter Reporting Format ...2
 1.1 Eingangskontrolle und Betrieb bei Leistungsüberangebot ...3
 1.2 EMV-Verhalten auf der AC-Seite ..4
 1.3 EMV-Verhalten auf der DC-Seite ..6
 1.4 Einschaltleistung ...8
 1.5 Nennspannungsbereich ..9
 1.6 Oberschwingungsströme ..10
 1.7 Wirkungsgrad ..12
 1.8 MPT-Verhalten ...13
 1.9 Rundsteuersignal - Empfindlichkeit ...15
 1.10 Selbstlauftest ...17

2 Wechselrichtertestresultate ...18
 2.1 EcoPower 20 ..19
 2.2 SolarMax 20 ..22
 2.3 SolarMax S ..25
 2.4 NEG 1600 ...29
 2.5 Solcon 3400HE ...32
 2.6 SPN 1000 ...35
 2.7 Sunrise 2000 ..39
 2.8 SWR 700 'Sunny Boy' ..43
 2.9 Top Class 2500/4 Grid II ...48
 2.10 Top Class 2500/6 Grid II ...51
 2.11 Top Class 4000 Grid II ...54
 2.12 Top Class 2500/6 Grid III ...57
 2.13 Top Class 4000 Grid III ...61

3 Zuverlässigkeit der Wechselrichter ..65

4 Publikationen ..66

5 Literatur ..66
1 Wechselrichter Reporting Format

Um ein einheitliches Prüfverfahren für alle Wechselrichter zu gewährleisten, wurden alle an der ISB durchführbaren Messungen in dem untenstehenden Wechselrichter Reporting Format zusammengefasst.

- Eingangskontrolle und Betrieb bei Leistungsüberangebot
- EMV-Verhalten
- Einschaltleistung und Nennspannungsbereich
- Oberschwingungsströme
- Wirkungsgrad
- Maximum Power Tracking Verhalten
- Rundsteuersignal-Empfindlichkeit
- Selbstlauftest

1.1 Eingangskontrolle und Betrieb bei Leistungsüberangebot

1.1.1 Messaufbau

Für diese Messung werden folgende Messgeräte und Betriebsmittel benötigt:
- Power Analyzer PM 3000A oder PM 3300 von Voltech
- Solargenerator-Simulator von SunPower GmbH

Bild 2: Messaufbau für Eingangskontrolle und Betrieb bei Leistungsüberangebot.

1.1.2 Beschreibung der Messung

In dieser Messung wird die korrekte Funktion des Wechselrichters sowohl bei DC-Nennleistung als auch bei Leistungsüberangebot P_{MPP} von 140% der DC-Nennleistung P_{nom} kontrolliert. Der Wechselrichter nimmt bei diesem Test diese angebotene Leistung P_{MPP} natürlich nicht voll auf. Die maximal zulässige Nennleistung des Solargenerators ist die Summe der Spitzenleistungen aller Module des Solargenerators bei Standard Test Conditions (STC), die an den betroffenen Wechselrichter angeschlossen werden darf. Gemäß dem SEV [16] hat die Messung dabei nach dem in Bild 3 dargestellten Ablauf zu erfolgen.

Bild 3: Testablauf für Eingangskontrolle und Betrieb bei DC-seitigem Leistungsüberangebot $P_{MPP}>P_{nom}$.

Angebotene DC-Leistung in % der max. zul. Solargenerator-Nennleistung bei STC

<table>
<thead>
<tr>
<th>Zeitabschnitt</th>
<th>Leistung</th>
<th>Kriterien</th>
</tr>
</thead>
<tbody>
<tr>
<td>Einfahrzeit</td>
<td>150</td>
<td>$<0.2s$</td>
</tr>
<tr>
<td>Transienten-Test</td>
<td>140</td>
<td>$10-60s$</td>
</tr>
<tr>
<td>Test auf Überlast bis stationär</td>
<td>100</td>
<td>$5-120min$</td>
</tr>
<tr>
<td>Betriebskontrolle bis stationär</td>
<td>50</td>
<td>$>10min$</td>
</tr>
</tbody>
</table>

Messdauer
1.2 EMV-Verhalten auf der AC-Seite

1.2.1 Messaufbau

Für die EMV-Messungen auf der AC-Seite werden folgende Messgeräte und Betriebsmittel benötigt:

- Spectrum Analyzer Advantest R3261A
- Messempfänger ESH 2 von Rohde & Schwarz
- Netznachbildung ESH2-Z5 von Rohde & Schwarz
- Netzfilter FSS2-200-30/5 von Timonta

Bild 4: Messaufbau für die EMV-Messungen auf der AC-Seite.
1.2.2 Grenzwerte
Auf den Netzanschlussleitungen dürfen die mit einer 50-Ω-Netznachbildung gemessenen Funkstör-
spannungen im Bereich 150 kHz - 30 MHz die in Bild 5 angegebenen Grenzwerte nach EN 55014
resp. EN 50081-1 nicht überschreiten.

![Grenzwerte der HF-Störspannungen auf der AC-Seite](image.png)

Bild 5: Grenzwerte der HF-Störspannungen auf der AC-Seite gemäss EN 55014 resp. EN 50081-1.

1.2.3 Beschreibung der Messung
Photovoltaik-Wechselrichter enthalten schnelle elektronische Schalter, die zur Erzielung eines hohen
Wirkungsgrades mit möglichst steilen Schaltflanken betrieben werden. Steilflankige grosse Ströme und
Spannungen haben aber einen hohen Gehalt an hochfrequenten Anteilen, die ohne entsprechende
Gegenmassnahmen in der näheren Umgebung den Radioempfang und andere elektronische Geräte
stören können. Bei netzgekoppelten Photovoltaikanlagen stellen sowohl die Verkabelung des Solarage-
nerators als auch die Netzanschlussleitungen ausgedehnte strahlungsfähige Gebilde dar, die für diese
Störungen als Sendeantenne wirken. Da ihre internen Schaltfrequenzen meist deutlich unter 100 kHz
liegen, verursachen Photovoltaik-Wechselrichter im Bereich über 30 MHz in der Regel keine nennens-
werten Störungen.

In der Praxis werden die europäische EMV-Norm für Haushaltsgeräte (EN 55014) resp. für Geräte in
Wohngebieten (EN50081-1) angewendet. Die Einhaltung der in dieser Norm enthaltenen Grenzwerte kann bei geriner Distanz (< 10 m) zwischen Störquelle und Störopfer noch nicht jede Störung des Radioempfangs verhindern. Anders als die mei-
sten elektrischen Kleingeräte sind netzgekoppelte Photovoltaikanlagen vom Morgen bis zum Abend
ununterbrochen in Betrieb. Für den problemlosen Einsatz in Wohngebieten ist es deshalb sinnvoll,
noch etwas tiefere Grenzwerte anzustreben.

Ausreichende Dämpfung der emittierten hochfrequenten Störspannungen ist auch ein sehr taugliches
Mittel, um die Immunität der Wechselrichter gegen transiente Überpunkungen und damit die Zuver-
lässigkeit der Geräte zu erhöhen.
1.3 EMV-Verhalten auf der DC-Seite

1.3.1 Messaufbau

Für die EMV-Messungen auf der DC-Seite werden folgende Messgeräte und Betriebsmittel benötigt:

- Spectrum Analyzer Advantest R3261A
- Messempfänger ESH 2 von Rohde & Schwarz
- Netznachbildung ESH2-Z5 von Rohde & Schwarz
- 1500Ω / 30dB - Tastkopf ESH2-Z3 von Rohde & Schwarz
- Netzfilter FSS2-150-16/3 von Timonta
- Netzfilter FSS2-200-30/5 von Timonta

Bild 6: Messaufbau für die EMV-Messungen auf der DC-Seite.
1.3.2 Grenzwerte
Für die übrigen Leitungen (DC-Anschlüsse) dürfen die mit einer hochohmigen Sonde von mindestens 1500 \(\Omega \) gemessenen HF-Störspannungen die in Bild 7 angegebenen Grenzwerte nach EN 55014 nicht überschreiten.

Grenzwerte der HF-Störspannungen auf der DC-Seite
(CISPR quasi peak, Messbandbreite 9kHz)

Bild 7: Grenzwerte der HF-Störspannungen auf der DC-Seite gemäß EN 55014.

1.3.3 Beschreibung der Messung
1.4 Einschaltleistung

1.4.1 Messaufbau

Für die Messung der Einschaltleistung werden folgende Messgeräte und Betriebsmittel benötigt:
- Power Analyzer PM 3000A oder PM 3300 von Voltech
- Solargenerator-Simulator von SunPower GmbH

Bild 8: Messaufbau für die Messung der Einschaltleistung.

1.4.2 Beschreibung der Messung

Bei dieser Messung wird die DC-Einschaltleistung gemessen. Die DC-Einschaltleistung ist die minimale Leistung, welche der Solargenerator liefern muss, damit sich der Wechselrichter stationär einschaltet. In diesem eingeschalteten Zustand kann aber die eingespeiste AC-Leistung immer noch praktisch null sein.
1.5 Nennspannungsbereich

1.5.1 Messaufbau
Für die Messung des AC- und DC-seitigen Nennspannungsbereichs werden folgende Messgeräte und Betriebsmittel verwendet:
- Power Analyzer PM 3000A oder PM 3300 von Voltech
- Variac 230V / 0 - 250V
- Solargenerator-Simulator von SunPower GmbH

Bild 9: Messaufbau für die Messung der Über- / Unterspannung.

1.5.2 Grenzwerte
DC-Seite: DC-Spannungsbereich gemäss Angaben des Wechselrichter-Herstellers
AC-Seite: Nennspannungsbereich 230V / 400V +10%, -15%

1.5.3 Beschreibung der Messung
Der AC-seitige Nennspannungsbereich ist nach [16] der Bereich, in dem die Netzspannung an den Anschlussklemmen des Gerätes variieren kann, ohne dass die Funktion des Wechselrichters beeinträchtigt wird.
(Anzustrebender Bereich: 230V -15% ... 230V +10%, bzw. 400V -15% ... 400V +10%)

1.6 Oberschwingungsströme

1.6.1 Messaufbau

Für die Messung der Oberschwingungsströme werden folgende Messgeräte und Betriebsmittel verwendet:

- Power Analyzer PM 3000A oder PM 3300 von Voltech
- PC mit GPIB-Schnittstellenkarte und Messsoftware
- Solargenerator-Simulator

Bild 10: Messaufbau für die Messung der Oberschwingungsströme.

1.6.2 Grenzwerte

Für Wechselrichter mit Strömen bis 16 A sind die Grenzwerte nach EN 60555-2 (Tabelle 1) einzuhalten.

<table>
<thead>
<tr>
<th>Ordnungszahl n</th>
<th>maximal zulässiger Oberschwingungsstrom (in Ampère)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>ungeradzahlige Oberschwingungen</td>
</tr>
<tr>
<td>3</td>
<td>2,30</td>
</tr>
<tr>
<td>5</td>
<td>1,14</td>
</tr>
<tr>
<td>7</td>
<td>0,77</td>
</tr>
<tr>
<td>9</td>
<td>0,40</td>
</tr>
<tr>
<td>11</td>
<td>0,33</td>
</tr>
<tr>
<td>13</td>
<td>0,21</td>
</tr>
<tr>
<td>$15 \leq n \leq 40$</td>
<td>$0,15 \times \frac{15}{n}$</td>
</tr>
<tr>
<td></td>
<td>geradzahlige Oberschwingungen</td>
</tr>
<tr>
<td>2</td>
<td>1,08</td>
</tr>
<tr>
<td>4</td>
<td>0,43</td>
</tr>
<tr>
<td>6</td>
<td>0,30</td>
</tr>
<tr>
<td>$8 \leq n \leq 40$</td>
<td>$0,23 \times \frac{8}{n}$</td>
</tr>
</tbody>
</table>

Tabelle 1: Grenzwerte für Oberschwingungsströme nach EN 60555-2
Für Wechselrichter mit Strömen über 16 A (dreiphasige Wechselrichter) wird der neue Normenentwurf IEC 1000-3-4 für Stromharmonische angewendet. Ist die Kurzschlussleistung S_{kV} am Verknüpfungspunkt mindestens 33mal größer als die Nennscheinleistung S_{wR} des Wechselrichters, sind die Grenzwerte ‘limits stage 1’ in Tabelle 2 zu verwenden.

<table>
<thead>
<tr>
<th>Ordnungszahl n</th>
<th>max. zulässiger Oberschwingungsstrom I_{n}/I_1 (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>21,6</td>
</tr>
<tr>
<td>5</td>
<td>10,7</td>
</tr>
<tr>
<td>7</td>
<td>7,2</td>
</tr>
<tr>
<td>9</td>
<td>3,8</td>
</tr>
<tr>
<td>11</td>
<td>3,1</td>
</tr>
<tr>
<td>13</td>
<td>2</td>
</tr>
<tr>
<td>15</td>
<td>0,7</td>
</tr>
<tr>
<td>17</td>
<td>1,2</td>
</tr>
<tr>
<td>19</td>
<td>1,1</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Ordnungszahl n</th>
<th>max. zulässiger Oberschwingungsstrom I_{n}/I_1 (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>21</td>
<td>$\leq 0,6$</td>
</tr>
<tr>
<td>23</td>
<td>0,9</td>
</tr>
<tr>
<td>25</td>
<td>0,8</td>
</tr>
<tr>
<td>27</td>
<td>$\leq 0,6$</td>
</tr>
<tr>
<td>29</td>
<td>0,7</td>
</tr>
<tr>
<td>31</td>
<td>0,7</td>
</tr>
<tr>
<td>≥ 33</td>
<td>$\leq 0,6$</td>
</tr>
</tbody>
</table>

Geradzahlige $\leq 8/n$ oder $\leq 0,6$

Tabelle 2: Grenzwerte für Oberschwingungsströme nach Draft IEC 1000-3-4, Stage 1.

Liegt jedoch die Kurzschlussleistung S_{kV} am Verknüpfungspunkt mindestens 120mal höher als die Nennscheinleistung des dreiphasigen Wechselrichters, sind höhere Grenzwerte ‘limits stage 2’ aus Tabelle 3 anwendbar.

<table>
<thead>
<tr>
<th>S_{kV}/S_{wR}</th>
<th>Grenzwert für Klirrfaktor (%</th>
<th>max. zulässiger Oberschwingungsstrom I_{n}/I_1 (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>THD</td>
<td>PWHD</td>
</tr>
<tr>
<td>120</td>
<td>18</td>
<td>29</td>
</tr>
<tr>
<td>175</td>
<td>25</td>
<td>33</td>
</tr>
<tr>
<td>250</td>
<td>35</td>
<td>39</td>
</tr>
<tr>
<td>350</td>
<td>48</td>
<td>46</td>
</tr>
<tr>
<td>450</td>
<td>58</td>
<td>51</td>
</tr>
<tr>
<td>> 600</td>
<td>70</td>
<td>57</td>
</tr>
</tbody>
</table>

Tabelle 3: Grenzwerte für Oberschwingungsströme nach Draft IEC 1000-3-4, Stage 2. Die geradzahligen Harmonischen dürfen $16/n\%$ nicht überschreiten.

Dabei gilt:

\[
 \text{THD} (\text{Total Harmonic Distortion}) = \sqrt{\sum_{n=2}^{40} \left(\frac{I_n}{I_1}\right)^2}
\]

\[
 \text{PWHD} (\text{Partial Weighted Harmonic Distortion}) = \sqrt{\sum_{n=14}^{40} \left(n\frac{I_n}{I_1}\right)^2}
\]

\[I_1 = \text{Effektivwert des Grundschwingungsstroms}
\]

\[I_n = \text{Effektivwert der } n\text{-ten Harmonischen}
\]

\[n = \text{Ordnungszahl der Harmonischen}
\]

1.6.3 Beschreibung der Messung

Wenn ein Photovoltaik-Wechselrichter im stationären Betrieb bei allen Leistungen höchstens die in den Tabellen 1-3 angegebenen Oberschwingungsströme ins Netz einspeist, kann er überall problemlos und ohne spezielle Kontrollmessungen angeschlossen werden. Die Messung der Oberschwingungsströme erfolgt innerhalb der Messprozedur für die Wirkungsgradmessung. In gewissen Leistungsstufen (z.B. alle 500W) wird eine Messung der Harmonischen (bis zur 25. Harmonischen) ausgelöst.
1.7 Wirkungsgrad

1.7.1 Messaufbau

Für die Wirkungsgradmessung werden folgende Messgeräte und Betriebsmittel verwendet:
- Power Analyzer PM 3000A oder PM 3300 von Voltech
- PC mit GPIB-Schnittstellenkarte und Messsoftware
- Solargenerator-Simulator

Bild 11: Messaufbau für die Wirkungsgradmessung.

1.7.2 Europäischer Wirkungsgrad

Der **Europäische Wirkungsgrad** ist ein Durchschnittswert, der zur näherungsweisen Berechnung des Energietrags bei mitteleuropäischen Strahlungsverhältnissen verwendet werden kann. Er wird nach der folgenden Formel berechnet (Indexwert = Prozent der Nennleistung):

\[
\eta = 0.03 \eta_{10} + 0.06 \eta_{10} + 0.13 \eta_{20} + 0.1 \eta_{30} + 0.48 \eta_{50} + 0.2 \eta_{100}
\]

1.7.2 Beschreibung der Messung

Um MPP-Tracking-Einflüsse auf die Wirkungsgradmessung auszuschliessen, werden die Messungen nach einem bestimmten Algorithmus durchgeführt.

In einem Messintervall von ca. 1,5 Sekunden werden die AC- und die DC-Leistung simultan gemessen und daraus der Wirkungsgrad berechnet. Innerhalb eines Zeitfensters von 30 Sekunden müssen dabei mindestens 12 Wirkungsgradpunkte vorkommen, bei welchen die DC-Leistung um weniger als 10 % geschwankt hat. Ist die Bedingung erfüllt, wird der Mittelwert dieser Messwerte abgespeichert, andernfalls werden die Messwerte verworfen.

Um die Wirkungsgradkurve zu erhalten, wird der Leistungsbereich des Wechselrichters in Leistungs- schritte (z.B. 10W) eingeteilt. Jeder der abgespeicherten Mittelwerte wird dabei in eine Leistungsklasse eingeteilt. Bestehen mehrere Mittelwerte für die gleiche Leistungsklasse, so wird aus den Mittelwerten wieder ein Mittelwert gebildet. Je länger bei diesem Verfahren eine Messung dauert, desto stärker "reift" die Wirkungsgradkurve, d.h. umso weniger streuen die Messwerte.

1.8 MPT-Verhalten

1.8.1 Messaufbau

Für die Untersuchung des statischen MPT-Verhaltens werden folgende Messgeräte und Betriebsmittel verwendet:

- Power Analyzer PM 3000A oder PM 3300 von Voltech
- Solargenerator - Kennlinienmessgerät (Eigenentwicklung der ISB)
- Solargenerator - Simulator von SunPower GmbH
- 2poliger Umschalter

![Diagram](image)

Bild 12: Messaufbau für die Untersuchung des statischen Maximum Power Tracking (MPT).

1.8.2 Beschreibung der Messung

- Durch Messung der maximalen Leistung P_{MPP} des Generators mit dem Solargenerator-Kennlinienmessgerät und anschliessender Messung der DC-Leistung P_{WR}, die der Wechselrichter dem Generator entnimmt, kann der *statische MPT-Wirkungsgrad* nach untenstehender Formel berechnet werden.

$$
\eta_{MPT} = \frac{\int_{t_0}^{t_M} p_{WR}(t) dt}{P_{MPP} \cdot t_M}
$$

t_M : Dauer der Messung

1.8.3 Bemerkungen zu den durchgeführten Messungen

Die Probleme wirken sich natürlich auch auf die vorgesehenen Messungen aus. Leider konnte nur bei wenigen Wechselrichtern der MPT-Wirkungsgrad bestimmt werden. Die ISB hofft nun im Rahmen eines beim BEW eingereichten Projekts, in welchem der MPT-Wirkungsgrad von Wechselrichtern Bestandteil ist, die Messungen bei allen Wechselrichtern durchführen zu können.
1.9 Rundsteuersignal - Empfindlichkeit

1.9.1 Messaufbau

Für die Messung der Rundsteuersignal-Empfindlichkeit werden folgende Messgeräte und Betriebsmittel verwendet:

- Rundsteuersignal-Simulator (Eigenentwicklung ISB)
- Netzoberschwingungsanalysator NOWA-1 von Wandel & Goltermann
- Variac 230V / 0..250V
- Voltmeter
- Solargenerator - Simulator von SunPower GmbH

Bild 13: Messaufbau für die Messung der Rundsteuersignal-Empfindlichkeit.

1.9.2 Grenzwerte

In Bild 14 sind die in einem Niederspannungsnetz maximal zu erwartenden Rundsteuersignalpegel (Effektivwerte) angegeben.

Bild 14: Maximal zu erwartende Rundsteuersignalpegel (nach SEV 3600-1).
1.9.3 Beschreibung der Messung

Die Wechselrichter werden mit dem Rundsteuersignalsimulator mit simulierten Rundsteuersignalen bei folgenden Frequenzen getestet:

<table>
<thead>
<tr>
<th>f_{rss} [Hz]</th>
<th>f_{rss} [Hz]</th>
<th>f_{rss} [Hz]</th>
<th>f_{rss} [Hz]</th>
</tr>
</thead>
<tbody>
<tr>
<td>220</td>
<td>717</td>
<td>1217</td>
<td>1717</td>
</tr>
<tr>
<td>317</td>
<td>817</td>
<td>1317</td>
<td>1817</td>
</tr>
<tr>
<td>417</td>
<td>917</td>
<td>1417</td>
<td>1917</td>
</tr>
<tr>
<td>517</td>
<td>1017</td>
<td>1517</td>
<td>2017</td>
</tr>
<tr>
<td>617</td>
<td>1117</td>
<td>1617</td>
<td></td>
</tr>
</tbody>
</table>

Tabelle 4: Messfrequenzen für Rundsteuersignal-Empfindlichkeit.

1.10 Selbstlauftest

1.10.1 Messaufbau

Für den Selbstlauftest werden folgende Messgeräte und Betriebsmittel verwendet:

- Selbstlauftestgerät (Eigenentwicklung ISB)
- Netzsimulationsschwingkreis (Eigenentwicklung ISB)
- Power Analyzer PM 3300 oder PM3000A von Voltech
- Oberschwingungsanalysator NOWA-1 von Wandel & Goltermann
- Oszilloskop

![Bild 15: Messaufbau für den Selbstlauftest.]

1.10.2 Beschreibung der Messung

Die Elemente R, C und L werden so abgeglichen, dass die mit dem NOWA-1 gemessenen Leistungen P und Q minimal sind, danach wird der Schalter S geöffnet. CH1 dient zur Feststellung des Schaltzeitpunktes. Nach fünf Sekunden muss der Wechselrichterstrom (CH3) jeweils 0 sein.

- **Test nach Schweizer Vorschrift**
 Für den Test nach aktueller Schweizer Vorschrift wird \(Z = \infty \) gesetzt. Der Netzsimulationsschwingkreis gehört grundsätzlich nicht dazu, kann aber zur Erschwerung des Testes beibehalten werden.

- **Test nach BRD-Vorschlag**
 Für die Durchführung des Selbstlauftests wird in Deutschland neuerdings die Überwachung der Netzimpedanz und eine relativ komplizierte Testschaltung vorgeschlagen. Mit etwas Netzwerktheorie kann man diese Schaltung in eine einfachere, äquivalente Schaltung umwandeln, die viel leichter zu handhaben ist (Bild 15).
 Die ENS (Einrichtung zur Netzüberwachung mit jeweils zugeordnetem Schaltorgan in Reihe) berücksichtigt einen Normenvorschlag der Berufsgenossenschaft der Feinmechanik und Elektrotechnik in Köln und detektiert einen Netzausfall durch Impedanzmessungen am Netz [15]. Dabei muss sich der Wechselrichter bei einem Impedanzsprung von \(\Delta Z_n = 0,5 \Omega \), in jedem Fall aber bei einer Gesamtimpedanz von \(Z_n > 1,75 \Omega \) innerhalb von 5 Sekunden vom Netz freischalten. Ausserdem darf sich der Wechselrichter nur auf Netze aufschalten, deren Impedanz \(Z_n < 1,25 \Omega \) beträgt.
 Für den Test nach dem neuen BRD-Vorschlag wird \(Z \) so gewählt, dass sich zusammen mit der zwischen L und N vorhandenen Netzimpedanz die für den Test erforderliche Gesamtimpedanz ergibt.
2 Wechselrichtertestresultate

In Tabelle 5 sind die wichtigsten Wechselrichterdaten und Messresultate der in diesem Projekt an der Ingenieurschule Burgdorf durchgeführten Tests ersichtlich. In den folgenden Teilabschnitten werden die ausführlichen Messresultate und die daraus gewonnenen Erkenntnisse für jeden getesteten Wechselrichter detailliert dargestellt.

<table>
<thead>
<tr>
<th>Wechselrichter</th>
<th>S_n</th>
<th>U_{dc}</th>
<th>W_{soc}</th>
<th>Transformator</th>
<th>1: 1-phasisig</th>
<th>3: 3-phasisig</th>
<th>Europ. Wirksgrad</th>
<th>Strom-Harmonische $<2kHz$</th>
<th>Selbstlauf</th>
<th>EMV AC</th>
<th>EMV DC</th>
<th>Rundsteuer-signalempfindlichkeit</th>
</tr>
</thead>
<tbody>
<tr>
<td>EcoPower 20</td>
<td>20</td>
<td>760</td>
<td>450</td>
<td>NF</td>
<td>3</td>
<td>3</td>
<td>92.6</td>
<td>0</td>
<td>0</td>
<td>++</td>
<td>++</td>
<td>++</td>
</tr>
<tr>
<td>SolarMax 20</td>
<td>20</td>
<td>560</td>
<td>283</td>
<td>NF</td>
<td>3</td>
<td>3</td>
<td>89.4</td>
<td>++</td>
<td>++</td>
<td></td>
<td>++</td>
<td>++</td>
</tr>
<tr>
<td>SolarMax S</td>
<td>3.3</td>
<td>550</td>
<td>66</td>
<td>ohne</td>
<td>1</td>
<td>1</td>
<td>91.7</td>
<td>$O/+'^{1)}$</td>
<td>+</td>
<td>++</td>
<td>++</td>
<td>+</td>
</tr>
<tr>
<td>NEG1600</td>
<td>1.5</td>
<td>96</td>
<td>15</td>
<td>NF</td>
<td>1</td>
<td>1</td>
<td>90.4</td>
<td>++</td>
<td>++</td>
<td>++</td>
<td>++</td>
<td>++</td>
</tr>
<tr>
<td>Solcon 3400HE</td>
<td>3.4</td>
<td>96</td>
<td>25</td>
<td>HF</td>
<td>1</td>
<td>1</td>
<td>91.9</td>
<td>++</td>
<td>0</td>
<td>+</td>
<td>++</td>
<td>++</td>
</tr>
<tr>
<td>SPN1000</td>
<td>1.0</td>
<td>64</td>
<td>15</td>
<td>NF</td>
<td>1</td>
<td>1</td>
<td>89.8</td>
<td>++</td>
<td>++</td>
<td>++</td>
<td>++</td>
<td>++</td>
</tr>
<tr>
<td>Sunrise 2000</td>
<td>2.0</td>
<td>160</td>
<td>12</td>
<td>NF</td>
<td>1</td>
<td>1</td>
<td>89.3</td>
<td>++</td>
<td>++</td>
<td>+</td>
<td>++</td>
<td>++</td>
</tr>
<tr>
<td>SWR700</td>
<td>0.7</td>
<td>160</td>
<td>6</td>
<td>NF</td>
<td>1</td>
<td>1</td>
<td>90.8</td>
<td>++</td>
<td>0</td>
<td>++</td>
<td>++</td>
<td>++</td>
</tr>
<tr>
<td>TC 2500/4 II</td>
<td>2.2</td>
<td>64</td>
<td>15</td>
<td>NF</td>
<td>1</td>
<td>1</td>
<td>91.9</td>
<td>++</td>
<td>+</td>
<td>0</td>
<td>++</td>
<td>++</td>
</tr>
<tr>
<td>TC 2500/6 II</td>
<td>2.2</td>
<td>96</td>
<td>14</td>
<td>NF</td>
<td>1</td>
<td>1</td>
<td>90.4</td>
<td>++</td>
<td>+</td>
<td>-</td>
<td>++</td>
<td>++</td>
</tr>
<tr>
<td>TC 4000 II</td>
<td>3.3</td>
<td>96</td>
<td>26</td>
<td>NF</td>
<td>1</td>
<td>1</td>
<td>90.2</td>
<td>++</td>
<td>+</td>
<td></td>
<td>++</td>
<td>++</td>
</tr>
<tr>
<td>TC 2500/6 III</td>
<td>2.25</td>
<td>96</td>
<td>24</td>
<td>NF</td>
<td>1</td>
<td>1</td>
<td>91.5</td>
<td>++</td>
<td>++</td>
<td>++</td>
<td>++</td>
<td>++</td>
</tr>
<tr>
<td>TC 4000 III</td>
<td>3.5</td>
<td>96</td>
<td>23</td>
<td>NF</td>
<td>1</td>
<td>1</td>
<td>91.9</td>
<td>++</td>
<td>++</td>
<td>++</td>
<td>++</td>
<td>++</td>
</tr>
</tbody>
</table>

++ sehr gut, Norm mit Reserve erfüllt
+ gut, Norm erfüllt
0 befriedigend, Norm beinahe erfüllt
- mangelhaft, Norm nicht erfüllt
-- ungenügend, Norm bei weitem nicht erfüllt

1) Nach der Modifikation durch die ISB
2) mit optionaler DC-Ringkern-Drossel
3) mit neuer Software

Tabelle 5: Die wichtigsten Wechselrichterdaten und Messresultate der getesteten Wechselrichter.
2.1 EcoPower 20

Technische Daten:

Hersteller: Imel Magnetics S.A. (früher Invertomatic S.A.), CH-6595 Riazzino
Nennleistung Pnac: 20 kW
Max. Eingangsleistung Pdc: 30 kW
Nennspannung Udc: 760V
Eingangsspannungsbereich: 1000 V max.
Ausgangsspannungsbereich: 3*400 V ± 10%
Transformator: NF (Trotz vorhandenem (Auto-) Trafo keine galvanische Trennung !)
Einspeisung: 3-phasig
ENS: nicht vorhanden

Eingangskontrolle und Betrieb bei Leistungsüberangebot:

Funktionstest: Dauerbetrieb an Generator mit 30kWp (später Reduktion auf 20kWp)
Leistungsüberangebot: Dauerbetrieb an Generator mit 30kWp

EMV-Verhalten auf der AC-Seite:

Pac = 20,0 kW

□ ++ □ + □ 0 □ - □ -- (verbesserte Abschirmung)
□ ++ □ + □ 0 □ - □ -- (Standardversion)

![Bild 16: Von einem EcoPower 20 auf der AC-Seite produzierte HF-Störspannungen im Vergleich zu den Grenzwerten von EN 55014.](image)

Die HF-Störspannungen waren beim Originalgerät zum Teil massiv über den Grenzwerten von EN 55014. Die unsaubere Seite wirkte dabei induktiv auf die saubere Seite des AC-Filters und machte daher die Filterung zum Teil unwirksam.

EMV-Verhalten auf der DC-Seite:

\[\text{Pac} = 21,0 \text{ kW} \]

- Bild 17: Von einem EcoPower 20 auf der DC-Seite produzierte HF-Störspannungen im Vergleich zu den Grenzwerten von EN 55014.

\[
\text{Frequenz [MHz]} \\
\begin{array}{ccc
Wirkungsgrad:

Wirkungsgrad bei

- 5% Pnac: 73,0%
- 10% Pnac: 83,1%
- 20% Pnac: 90,1%
- 30% Pnac: 92,7%
- 50% Pnac: 94,7%
- 100% Pnac: 95,1%

Europäischer Wirkungsgrad: 92,6%
Max. Wirkungsgrad 95,3% bei 80% von Pnac

MPT-Verhalten:

Das MPT-Verhalten des EcoPower 20 konnte mit dem vorhandenen Material nicht gemessen werden.

Rundsteuersignal-Empfindlichkeit:

1. Uac = 230 V Pac = 1,0 kW □ ++ □ + □ 0 □ - □ --

Selbstlauftest:

□ Test nach Schweizer Vorschrift (inkl. Netzsimulationsschwingkreis)
□ Test nach BRD-Vorschlag (Messung mit vereinfachter ISB-Testschaltung)

Messungen bei:

1. Pac = 17,4 kW Abschaltdauer = > 97 s
2. Pac = 17,0 kW Abschaltdauer = 8 s
3. Pac = 7,8 kW Abschaltdauer = 0,15 s
4. Pac = 4,3 kW Abschaltdauer = 0,15 s

Testergebnis: □ ++ □ + □ 0 □ - □ --

Beim EcoPower 20 kann bei grösseren Leistungen (ab ca. 14kW) beim Betrieb mit angepasster Last ab und zu Selbstlauf auftreten.
2.2 SolarMax 20

Technische Daten:

Hersteller: Sputnik Engineering AG, CH-2504 Biel
Nennleistung Pnac: 20 kW
Max. Eingangsleistung Pdc: 30 kW
Nennspannung Udc: 560 V
Eingangsspannungsbereich: 450...800 V
Ausgangsspannungsbereich: 3*400 V +15% / -10%
Transformator: NF
Einspeisung: 3-phasig
ENS: nicht vorhanden

Eingangskontrolle und Betrieb bei Leistungsüberangebot:

Funktionstest: Dauerbetrieb mit einer Generatorleistung von 20kWp
Leistungsüberangebot: nicht gemessen

EMV-Verhalten auf der AC-Seite:

\[P_{ac} = 16,0 \text{ kW} \]

<table>
<thead>
<tr>
<th>Frequenz [MHz]</th>
<th>0.1</th>
<th>1</th>
<th>10</th>
<th>100</th>
</tr>
</thead>
<tbody>
<tr>
<td>Funktionsspannung [dB/V]</td>
<td>10</td>
<td>20</td>
<td>30</td>
<td>40</td>
</tr>
<tr>
<td>CENELEC EN 55014</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SolarMax20 (Standard Version)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SolarMax20 (ISB-DC-Filter)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

EMV-Verhalten auf der DC-Seite:

\[P_{ac} = 16,0 \text{ kW} \]

<table>
<thead>
<tr>
<th>Frequenz [MHz]</th>
<th>0.1</th>
<th>1</th>
<th>10</th>
<th>100</th>
</tr>
</thead>
<tbody>
<tr>
<td>Funktionsspannung [dB/V]</td>
<td>10</td>
<td>20</td>
<td>30</td>
<td>40</td>
</tr>
<tr>
<td>CENELEC EN 55014</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SolarMax20 (Standard Version)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SolarMax20 (ISB-DC-Filter)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Bild 21: Von einem SolarMax 20 auf der DC-Seite produzierte HF-Störspannungen im Vergleich zu den Grenzwerten von EN 55014.
Der SolarMax 20 war standardmäßig auf der DC-Seite im Frequenzbereich zwischen 150kHz...2MHz stark über den Grenzwerten von EN 55014. Der eingebaute Ringkern erwies sich hier als wenig wirksam. Mit einem anderen Ringkern, der stromkompensiert gewickelt wurde, sowie Y-Kondensatoren konnte der Wechselrichter recht gut entstört werden. Die Grenzwerte werden zwischen 200kHz...400kHz nur noch leicht (um ca. 5dB) überschritten.

Einschaltleistung und Nennspannungsbereiche:

Einsatzleistung:	Pdc = 283 W
Unterspannung:	Uac = 200 V
Überspannung:	Uac = 257 V

Oberschwingungsströme:

<table>
<thead>
<tr>
<th>Verwendete Norm:</th>
<th>EN60555-2 + Draft IEC 1000-3-4, Stage 1</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. (P_{ac} = 5,1) kW</td>
<td>(+ + + + 0 - - - -)</td>
</tr>
<tr>
<td>2. (P_{ac} = 8,0) kW</td>
<td>(+ + + + 0 - - - -)</td>
</tr>
<tr>
<td>3. (P_{ac} = 13,5) kW</td>
<td>(+ + + + 0 - - - -)</td>
</tr>
</tbody>
</table>

Bild 22: Stromoberschwingungen des SolarMax 20 bei 13,5kW AC-Leistung im Vergleich zu den Grenzwerten des Normentwurfs IEC 1000-3-4 ("Stage 1" für uneingeschränkten Anschluss).

Wirkungsgrad:

<table>
<thead>
<tr>
<th>Wirkungsgrad bei (P_{ac})</th>
<th>(%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>5% (P_{ac})</td>
<td>74,0</td>
</tr>
<tr>
<td>10% (P_{ac})</td>
<td>81,5</td>
</tr>
<tr>
<td>20% (P_{ac})</td>
<td>87,4</td>
</tr>
<tr>
<td>30% (P_{ac})</td>
<td>89,7</td>
</tr>
<tr>
<td>50% (P_{ac})</td>
<td>91,2</td>
</tr>
<tr>
<td>100% (P_{ac})</td>
<td>90,4</td>
</tr>
</tbody>
</table>

Europäischer Wirkungsgrad: 89,4

Max. Wirkungsgrad 91,6 % bei 61 % von \(P_{ac} \)
MPT-Verhalten:
Das MPT-Verhalten des SolarMax 20 konnte mit dem vorhandenen Material nicht gemessen werden.

Rundsteuersignal-Empfindlichkeit:
1. \(U_{ac} = 230 \text{ V} \quad P_{ac} = 1,7 \text{ kW} \quad \begin{array}{cccc} \star \star & \star & 0 & - & - \end{array} \\
2. \(U_{ac} = 240 \text{ V} \quad P_{ac} = 0,4 \text{ kW} \quad \begin{array}{cccc} \star \star & \star & 0 & - & - \end{array} \\
3. \(U_{ac} = 250 \text{ V} \quad P_{ac} = 0,15 \text{ kW} \quad \begin{array}{cccc} \star \star & \star & 0 & - & - \end{array}

Selbstaufentest:
\(\star \) Test nach Schweizer Vorschrift

Messungen bei:
1. \(P_{ac} = 14,3 \text{ kW} \quad \text{Abschaltdauer} = 0,16 \text{ s} \)
2. \(P_{ac} = 12,2 \text{ kW} \quad \text{Abschaltdauer} = 0,18 \text{ s} \)

Testergebnis:
\(\star \star \) ++ 0 - -
2.3 SolarMax S

Technische Daten:

Hersteller: Sputnik Engineering AG, CH-2504 Biel
Nennleistung Pnac: 3,3 kW
Max. Eingangsleistung Pdc: 4,5 kW
Nennspannung Udc: 550 V
Eingangsspannungsbereich: 400...750 V (850V max.)
Ausgangsspannungsbereich: 230 V +10% / -15%
Transformator: ohne
Einspeisung: 1-phasig
ENS: nicht vorhanden

Eingangskontrolle und Betrieb bei Leistungsüberangebot:

Funktionstest: Betrieb während 8 Stunden bei Pac = 3,3 kW
Leistungsüberangebot: nicht gemessen

EMV-Verhalten auf der AC-Seite:

\[
P_{ac} = 3,3 \text{ kW} \\
\begin{array}{ccccccc}
+ & + & 0 & - & - & \quad (\text{nach Modifikation durch die ISB}) \\
+ & + & 0 & 0 & - & - & \quad (\text{Standardversion})
\end{array}
\]

EMV-Verhalten auf der DC-Seite:

\(P_{ac} = 3,0 \text{ kW} \)

Einschaltleistung und Nennspannungsbereiche:

Einschaltleistung: \(P_{dc} = 66 \text{ W} \)
Unterspannung: \(U_{ac} = 200 \text{ V} \)
Überspannung: \(U_{ac} = 258 \text{ V} \)

Oberschwingungsströme:

Verwendete Norm: \(EN60555-2 \)

1. \(P_{ac} = 2,5 \text{ kW} \)
2. \(P_{ac} = 3,0 \text{ kW} \)
3. \(P_{ac} = 3,5 \text{ kW} \)

Wirkungsgrad:

\begin{align*}
\text{Wirkungsgrad bei} & \quad 5\% \text{ } P_{ac}: & 85,0\% & \text{ (bei Taktfrequenz AUTO)} \\
& \quad 10\% \text{ } P_{ac}: & 86,8\% \\
& \quad 20\% \text{ } P_{ac}: & 90,3\% \\
& \quad 30\% \text{ } P_{ac}: & 91,9\% \\
& \quad 50\% \text{ } P_{ac}: & 92,6\% \\
& \quad 100\% \text{ } P_{ac}: & 92,6\% \\
\text{Europäischer Wirkungsgrad:} & & 91,7\% \\
\text{Max. Wirkungsgrad} & & 94,0\% \text{ bei } 60...90 \% \text{ von } P_{ac} \text{ (mit } 9\text{kHz Taktfrequenz)}
\end{align*}
MPT-Verhalten:

Rundsteuersignal-Empfindlichkeit:

1. \(U_{ac} = 220 \, V \quad P_{ac} = 0,28 \, kW \)
2. \(U_{ac} = 235 \, V \quad P_{ac} = 3,2 \, kW \)
3. \(U_{ac} = 250 \, V \quad P_{ac} = 0,15 \, kW \)

Selbstlauftest:

- Test nach Schweizer Vorschrift (inkl. Netzsimulationsschwingkreis)
- Test nach BRD-Vorschlag (Messung mit vereinfachter ISB-Testschaltung)

Messungen bei:

1. \(P_{ac} = 3,0 \, kW \) Abschaltdauer = 0,64 s
2. \(P_{ac} = 1,0 \, kW \) Abschaltdauer = 0,28 s
3. \(P_{ac} = 0,36 \, kW \) Abschaltdauer = 0,35 s
4. \(P_{ac} = 0,13 \, kW \) Abschaltdauer = 0,67 s

Testergebnis:

\[\begin{align*}
\text{Testergebnis:} & \quad \square ++ \quad \square + \quad \square 0 \quad \square - \quad \square -- \\
\end{align*} \]

Zu Beginn bekundete der SolarMax S Probleme mit der Erkennung eines Netzausfalles bei kleineren Leistungen. Da die Frequenz der Wechselrichterausgangsspannung bei einem Selbstlauf auf etwa 50,9 Hz davonläuft (Bild 28) konnte das Problem durch die Programmmierung eines kleineren Frequenzfensters in der Steuersoftware behoben werden. Bei bereits früher (vor ca. Sept. 95) ausgelieferten SolarMax S sollte aus Sicherheitsgründen das EPROM ausgetauscht werden.

Bild 29: Abschaltverhalten des SolarMax S mit neuer Softwareversion bei einem Netzausfall. Die Wechselrichterleistung Pac betrug vor dem Netzausfall 3,0 kW.
2.4 NEG 1600

Technische Daten:

Hersteller: UfE Umweltfreundliche Energieanlagen, Göttingen (Deutschland)
Nennleistung: 1,5 kW
Max. Eingangsleistung: 2,0 kW
Nennspannung: 96 V
Eingangsspannungsbereich: 54...110 V
Ausgangsspannungsbereich: 207..244 V
Transformator: NF
Einspeisung: 1-phasig
ENS: nicht vorhanden

Eingangskontrolle und Betrieb bei Leistungsüberangebot:

Funktionstest: Betrieb während 8 Stunden bei Pac = 1,3 kW
Leistungsüberangebot: nicht gemessen

EMV-Verhalten auf der AC-Seite:

\[Pac = 0,84 \text{ kW} \]

![CISPR-Funkstörschwellungmessung NEG 1600 AC-Seite](image)

Bild 30: Von einem NEG 1600 auf der AC-Seite produzierte HF-Störsignale im Vergleich zu den Grenzwerten von EN 55014.

EMV-Verhalten auf der DC-Seite:

\[Pac = 1,1 \text{ kW} \]

![CISPR-Funkstörschwellungmessung NEG 1600 DC-Seite](image)

Bild 31: Von einem NEG 1600 auf der DC-Seite produzierte HF-Störsignale im Vergleich zu den Grenzwerten von EN 55014.
Einschaltleistung und Nennspannungsbereiche:

- Einschaltleistung: $P_{dc} = 15\, W$
- Unterspannung: $U_{ac} = 196\, V$
- Überspannung: $U_{ac} = 251\, V$

Oberschwingungsströme:

Verwendete Norm: EN 60555-2 / IEC 1000-3-4, Stage 1

1. $P_{ac} = 0,5\, kW$
 - ++ 0 0 -
2. $P_{ac} = 1,0\, kW$
 - ++ 0 0 -

Bild 32: Stromoberschwingungen des NEG 1600 bei 0,5kW und 1,0kW AC-Leistung im Vergleich zu den Grenzwerten von EN 60555-2.

Wirkungsgrad:

Wirkungsgrad bei
- 5% P_{nac}: 83,5%
- 10% P_{nac}: 87,5%
- 20% P_{nac}: 91,1%
- 30% P_{nac}: 92,0%
- 50% P_{nac}: 91,4%
- 100% P_{nac}: 88,3%

Europäischer Wirkungsgrad: 90,4%
Max. Wirkungsgrad 92,1 % bei 34 % von P_{nac}

Bild 33: Wirkungsgrad in Funktion der normierten (bezogen auf Nennleistung) Wechselstromleistung des NEG 1600.
MPT-Verhalten:
Das MPT-Verhalten wurde beim NEG 1600 nicht untersucht.

Rundsteuersignal-Empfindlichkeit:
1. $U_{ac} = 230\,\text{V}$ $P_{ac} = 0,2\,\text{kW}$ $\boxplus\boxplus\boxplus\boxplus\boxplus\boxplus\boxplus\boxplus$
2. $U_{ac} = 250\,\text{V}$ $P_{ac} = 0,7\,\text{kW}$ $\boxplus\boxplus\boxplus\boxplus\boxplus\boxplus\boxplus\boxplus$

Selbstlauftest:
■ Test nach Schweizer Vorschrift (inkl. Netzsimulationsschwingkreis)
□ Test nach BRD-Vorschlag (Messung mit vereinfachter ISB-Testschaltung)

Messungen bei:
1. $P_{ac} = 1,5\,\text{kW}$ Abschaltdauer $= 1,7$ s
2. $P_{ac} = 0,3\,\text{kW}$ Abschaltdauer $= 2,3$ s

Testergebnis: $\boxplus\boxplus\boxplus\boxplus\boxplus\boxplus\boxplus\boxplus$
2.5 Solcon 3400HE

Technische Daten:

Hersteller: Hardmeier electronics, CH-8408 Winterthur
Nennleistung Pnac: 3,4 kW
Max. Eingangsleistung Pdc: 5,6 kW
Nennspannung Udc: 96 V
Eingangsspannungsbereich: 70...140 V (150 V max.)
Ausgangsspannungsbereich: 230 V +/- 10%
Transformator: HF
Einspeisung: 1-phasig
ENS: nicht vorhanden

Eingangskontrolle und Betrieb bei Leistungsüberangebot:

Funktionstest: Dauerbetrieb mit Generator von 4068 Wp
Leistungsüberangebot: nicht gemessen

EMV-Verhalten auf der AC-Seite:

\[\text{Pac} = 2,8 \text{ kW} \]

- + - 0 - - (nach Modifikation durch die ISB)
- + - 0 - - (Standardversion)

Bild 34: Von einem Solcon 3400HE auf der AC-Seite produzierte HF-Störspannungen im Vergleich zu den Grenzwerten von EN 55014. Durch zusätzliche Y-Kondensatoren konnten die Störpegel unter die Grenzwerte gebracht werden.

EMV-Verhalten auf der DC-Seite:

\[\text{Pac} = 3,1 \text{ kW} \]

- + - 0 - -

Bild 35: Von einem Solcon 3400HE auf der DC-Seite produzierte HF-Störspannungen im Vergleich zu den Grenzwerten von EN 55014.
Einschaltleistung und Nennspannungsbereiche:

Einschaltleistung: \(P_{dc} = 25 \, W \)
Unterspannung: \(\text{nicht gemessen} \)
Überspannung: \(\text{nicht gemessen} \)

Oberschwingungsströme:

Verwendete Norm:
1. \(P_{ac} = 1,0 \, kW \)
 - EN60555-2
 - Draft IEC 1000-3-4, Stage 1
2. \(P_{ac} = 2,1 \, kW \)
 - ++ + 0 - -
3. \(P_{ac} = 3,2 \, kW \)
 - ++ + 0 - -

Da der Solcon 3400HE die Sinusform des Netzes zu verbessern versucht, können bei grösseren Leistungen bei niedrigeren Harmonischen (z.B. der 3. Harmonischen) grössere Oberschwingungsströme auftreten, wenn die entsprechende Oberschwingungsspannung am Verknüpfungspunkt zu gross ist.

Wirkungsgrad:

Wirkungsgrad bei
- 5% \(P_{nac} \): 86,4%
- 10% \(P_{nac} \): 90,4%
- 20% \(P_{nac} \): 92,6%
- 30% \(P_{nac} \): 93,2%
- 50% \(P_{nac} \): 92,6%
- 100% \(P_{nac} \): 90,0%

Europäischer Wirkungsgrad: 91,9%
Max. Wirkungsgrad 93,2% bei 40 % von \(P_{nac} \)

Bild 37: Wirkungsgrad in Funktion der normierten (bezogen auf Nennleistung) Wechselstromleistung des Solcon 3400HE.
MPT-Verhalten:
Anhand der Daten aus dem Dauertest konnte für den Solcon 3400HE ein effizientes und schnelles Tracking beobachtet werden.

Rundsteuersignal-Empfindlichkeit:
1. $U_{ac} = 230\, \text{V} \quad P_{ac} = 0,4\, \text{kW}$
 $\square ++ \quad \square + \quad \square 0 \quad \square - \quad \square --$
2. $U_{ac} = 240\, \text{V} \quad P_{ac} = 0,3\, \text{kW}$
 $\square ++ \quad \square + \quad \square 0 \quad \square - \quad \square --$
3. $U_{ac} = 250\, \text{V} \quad P_{ac} = 0,2\, \text{kW}$
 $\square ++ \quad \square + \quad \square 0 \quad \square - \quad \square --$

Bei stärkeren Rundsteuersignalen (an der ISB die RSS von der BKW) schaltet der Solcon 3400HE manchmal kurz ab (Bild 38). Da er den Betrieb aber innerhalb weniger Sekunden wieder aufnimmt, ist der Ertragsverlust durch Rundsteuersignale sehr gering.

Bild 38: Errorfile eines Solcon 3400HE. Sehr schön ersichtlich ist eine Kurzabschaltung wegen Rundsteuersignalen der BKW.

Selbstlauftest:

- Test nach Schweizer Vorschrift (inkl. Netzsimulationsschwingkreis)
- Test nach BRD-Vorschlag (Messung mit vereinfachter ISB-Testschaltung)

Messungen bei:
1. $P_{ac} = 2,5\, \text{kW}$
 Abschaltdauer = $1,6\, \text{s}$
2. $P_{ac} = 1,0\, \text{kW}$
 Abschaltdauer = $1,1\, \text{s}$
3. $P_{ac} = 0,4\, \text{kW}$
 Abschaltdauer = $0,4\, \text{s}$

Testergebnis:
$\square ++ \quad \square + \quad \square 0 \quad \square - \quad \square --$

2.6 SPN 1000

Technische Daten:

- Hersteller: Siemens Solar GmbH, D-80915 München
- Nennleistung Pnac: 1,0 kW
- Max. Eingangsleistung Pdc: ---
- Nennspannung Udc: 64 V
- Eingangsspannungsbereich: 50...95 V (100V max.)
- Ausgangsspannungsbereich: 230 V ±5%
- Transformator: NF
- Einspeisung: 1-phasig
- ENS: vorhanden

Eingangskontrolle und Betrieb bei Leistungsüberangebot:

- Funktionstest: Betrieb während 8 Stunden bei Pac = 0,8 kW
- Leistungsüberangebot: Betrieb während 1,5 Stunden bei P_{MPP} = 1,6 kW

EMV-Verhalten auf der AC-Seite:

\[Pac = 0,7 \text{ kW} \]

Bild 39: Von einem SPN 1000 auf der AC-Seite produzierte HF-Störspannungen im Vergleich zu den Grenzwerten von EN 55014.

EMV-Verhalten auf der DC-Seite:

\[Pac = 0,73 \text{ kW} \]

Bild 40: Von einem Solcon 3400HE auf der DC-Seite produzierte HF-Störspannungen im Vergleich zu den Grenzwerten von EN 55014.

Der SPN 1000 war der erste Wechselrichter, der die EMV-Normen beidseitig auf Anhieb erfüllte.
Einschaltleistung und Nennspannungsbereiche:
Einschaltleistung: \(P_{dc} = 15 \, \text{W} \)
Unterspannung: \(U_{ac} = 191 \, \text{V} \)
Überspannung: \(U_{ac} = 251 \, \text{V} \)

Oberschwingungsströme:
Verwendete Norm: EN60555-2, Draft IEC 1000-3-4, Stage 1
1. \(P_{ac} = 0,4 \, \text{kW} \)
2. \(P_{ac} = 0,6 \, \text{kW} \)
3. \(P_{ac} = 0,8 \, \text{kW} \)

Wirkungsgrad:
Wirkungsgrad bei 5\% \(P_{nac} \): 76,1 \%
10\% \(P_{nac} \): 84,2 \%
20\% \(P_{nac} \): 89,7 \%
30\% \(P_{nac} \): 91,3 \%
50\% \(P_{nac} \): 91,4 \%
100\% \(P_{nac} \): 88,8 \%
Europäischer Wirkungsgrad: 89,8 \%
Max. Wirkungsgrad 91,4 \% bei 44 \% von \(P_{nac} \)

Bild 42: Wirkungsgrad in Funktion der normierten (bezogen auf die Nennleistung) Wechselstromleistung des SPN 1000.
MPT-Verhalten:
Das MPT-Verhalten des SPN 1000 wurde noch nicht untersucht.

Rundsteuersignal-Empfindlichkeit:
1. $U_{ac} = 220 \, V$ $P_{ac} = 0,8 \, kW$ \square $+$ \square 0 \square $-\quad\square$ $--$
2. $U_{ac} = 232 \, V$ $P_{ac} = 0,8 \, kW$ \square $+$ \square 0 \square $-\quad\square$ $--$
3. $U_{ac} = 240 \, V$ $P_{ac} = 0,8 \, kW$ \square $+$ \square 0 \square $-\quad\square$ $--$

Bild 43: Empfindlichkeit auf Rundsteuersignale des SPN 1000 bei verschiedenen Netzspannungen. Durch die eingebaute ENS reagiert der SPN 1000 empfindlicher auf Rundsteuersignale als andere Wechselrichter.

Selbstlaufftest:
☐ Test nach Schweizer Vorschrift (inkl. Netzsimulationsschwingkreis)
☐ Test nach BRD-Vorschlag (Messung mit vereinfacher ISB-Testschaltung)

Messungen bei:
1. $P_{ac} = 1,0 \, kW$ Abschaltdauer = 0,5 s
2. $P_{ac} = 0,8 \, kW$ Abschaltdauer = 3,0 s
3. $P_{ac} = 0,5 \, kW$ Abschaltdauer = 3,0 s
4. $P_{ac} = 0,07 \, kW$ Abschaltdauer = 1,5 s

Testergebnis: \square $+$ \square 0 \square $-\quad\square$ $--$

Bild 44: Abschaltverhalten des SPN 1000 bei einem Netz-Impedanzsprung von 0,6 Ω.
ENS - Verhalten:

2.7 Sunrise 2000

Technische Daten:

Hersteller: Fronius Schweissmaschinen KG Austria, A-4600 Wels-Thalheim
Nennleistung P_{nac}: 2,0 kW
Max. Eingangsleistung P_{dc}: 2500 kW
Nennspannung U_{dc}: 160 V
Eingangsspannungsbereich: 120...220 V (250 V max.)
Ausgangsspannungsbereich: 230 V +10% / -15%
Transformator: NF
Einspeisung: 1-phasig
ENS: nicht vorhanden

Eingangskontrolle und Betrieb bei Leistungsüberangebot:
Funktionstest: Betrieb während 8 Stunden bei $P_{\text{ac}} = 2,0$ kW
Leistungsüberangebot: Betrieb während 2 Stunden bei $P_{\text{MPP}} = 2,5$ kW

EMV-Verhalten auf der AC-Seite:

\[P_{\text{ac}} = 1,9\ kW \]

EMV-Verhalten auf der DC-Seite:

\[P_{\text{ac}} = 1,9\ kW \]

Einschaltleistung und Nennspannungsbereiche:

Einschaltleistung: \(P_{dc} = 12 \) W
Unterspannung: \(U_{ac} = 196 \) V
Überspannung: \(U_{ac} = 252 \) V

Oberschwingungsströme:

Verwendete Norm:
1. \(P_{ac} = 0,7 \) kW
 - EN60555-2
 - Draft IEC 1000-3-4, Stage 1
2. \(P_{ac} = 1,3 \) kW
 - ++
 - 0
 - 0
3. \(P_{ac} = 1,8 \) kW
 - ++
 - 0
 - 0

Wirkungsgrad:

Wirkungsgrad bei
- 5\% \(P_{ac} \): 81,1\%
- 10\% \(P_{ac} \): 87,1\%
- 20\% \(P_{ac} \): 90,8\%
- 30\% \(P_{ac} \): 91,5\%
- 50\% \(P_{ac} \): 90,7\%
- 100\% \(P_{ac} \): 85,8\%

Europäischer Wirkungsgrad: 89,3\%

Max. Wirkungsgrad 91,5\% bei 30 \% von \(P_{ac} \)

MPT-Verhalten:

Rundsteuersignal-Empfindlichkeit:
1. $U_{ac} = 234 \text{ V}$ $P_{ac} = 1,8 \text{ kW}$
 $+$ $+$ $+$ $+$ 0 $-$ $-$
2. $U_{ac} = 240 \text{ V}$ $P_{ac} = 1,8 \text{ kW}$
 $+$ $+$ $+$ $+$ 0 $-$ $-$
3. $U_{ac} = 250 \text{ V}$ $P_{ac} = 1,8 \text{ kW}$
 $+$ $+$ $+$ $+$ 0 $-$ $-$

Selbstlaufest:
□ Test nach Schweizer Vorschrift (inkl. Netzsimulationsschwingkreis)
□ Test nach BRD-Vorschlag (Messung mit vereinfachter ISB-Testschaltung)

Messungen bei:
1. $P_{ac} = 1,8 \text{ kW}$ Abschaltdauer = 0,48 s
2. $P_{ac} = 1,2 \text{ kW}$ Abschaltdauer = 0,54 s
3. $P_{ac} = 0,8 \text{ kW}$ Abschaltdauer = 0,50 s
4. $P_{ac} = 0,2 \text{ kW}$ Abschaltdauer = 0,50 s
Testergebnis: □ $+$ $+$ $+$ $+$ 0 $-$ $-$
Bild 53: Abschaltverhalten des Sunrise 2000 bei einem Netzausfall (Pac = 1,2 kW).

Bild 54: Abschaltverhalten des Sunrise 2000 bei einem Netzausfall (Pac = 1,8 kW).
2.8 SWR 700 ‘Sunny Boy’

Technische Daten:

Hersteller: SMA Regelsysteme GmbH, D-34266 Niestetal
Nennleistung Pnac: 0,7 kW (0,56 kW bei 8 Modulen, 0,42 kW bei 6 Modulen)
Max. Eingangsleistung Pdc: ---
Nennspannung Udc: 160 V (128 V, 96 V)
Eingangsspannungsbereich: 125...250 V (100...200 V, 75...150 V)
Ausgangsspannungsbereich: 196...253 V
Transformator: NF
Einspeisung: 1-phasig
ENS: vorhanden

Eingangskontrolle und Betrieb bei Leistungsüberangebot:

Funktionstest: Betrieb während 8 Stunden bei Pac = 0,7 kW
Leistungsüberangebot: Betrieb während 1 Stunde bei P_{MP}_{P} = 1,0 kW

EMV-Verhalten auf der AC-Seite:

Pac = 0,73 kW

![Graph AC-Side](image1)

EMV-Verhalten auf der DC-Seite:

Pac = 0,73 kW

![Graph DC-Side](image2)
Einschaltleistung und Nennspannungsbereiche:

Einschaltleistung: \(P_{dc} = 12 \text{ W} \)
Unterspannung: \(U_{ac} = 196 \text{ V} \)
Überspannung: \(U_{ac} = 252 \text{ V} \)

Oberschwingungsströme:

Verwendete Norm:
1. \(P_{ac} = 0,3 \text{ kW} \)
 - EN60555-2
 - Draft IEC 1000-3-4, Stage 1
2. \(P_{ac} = 0,7 \text{ kW} \)
 - EN60555-2

Wirkungsgrad:

Wirkungsgrad bei
- 5\% \(P_{nac} \): 80,0 \%
- 10\% \(P_{nac} \): 86,3 \%
- 20\% \(P_{nac} \): 90,7 \%
- 30\% \(P_{nac} \): 91,5 \%
- 50\% \(P_{nac} \): 92,3 \%
- 100\% \(P_{nac} \): 89,9 \%

Europäischer Wirkungsgrad: 90,8 \%
Max. Wirkungsgrad 92,3 \% bei 50 \% von \(P_{nac} \)

Bild 58: Wirkungsgrad in Funktion der normierten (bezogen auf Nennleistung) Wechselstromleistung des SWR 700 'Sunny Boy' bei Anschluss von 8 und 10 Modulen.
MPT-Verhalten:
Der statische MPT-Wirkungsgrad wird beim SWR 700 durch die eingebaute ENS leicht beeinflusst. Bei jeder Impedanzmessung verlässt der Wechselrichter für einen kurzen Augenblick den MPP in Richtung Leerlaufspannung, was natürlich auf Kosten des MPT-Wirkungsgrades geht. Ansonsten besitzt der SWR 700 ein relativ effizientes Maximum Power Tracking.

Bild 59: Statischer MPT-Wirkungsgrad in Funktion der maximal verfügbaren Generatorleistung des SWR 700. Andererseits ist aus der Kurve ersichtlich, dass der SWR 700 ab ca. 0,81 kW DC-Leistung die Leistung begrenzt.

Rundsteuersignal-Empfindlichkeit:
1. $U_{ac} = 220$ V $P_{ac} = 0,7$ kW $\square++ \square+ \square0 \square- \square--$
2. $U_{ac} = 230$ V $P_{ac} = 0,7$ kW $\square++ \square+ \square0 \square- \square--$
3. $U_{ac} = 240$ V $P_{ac} = 0,7$ kW $\square++ \square+ \square0 \square- \square--$

Bild 60: Empfindlichkeit auf Rundsteuersignale des SWR 700 bei verschiedenen Netzspannungen.

Selbstlauftest:
☐ Test nach Schweizer Vorschrift (inkl. Netzsimulationsschwingkreis)
☒ Test nach BRD-Vorschlag (Messung mit vereinfachter ISB-Testschaltung)

Messungen bei:
1. $P_{ac} = 0,7$ kW Abschaltdauer = 4,3 s
2. $P_{ac} = 0,5$ kW Abschaltdauer = 4,4 s
3. $P_{ac} = 0,3$ kW Abschaltdauer = 4,7 s
4. $P_{ac} = 0,13$ kW Abschaltdauer = 4,3 s

Testergebnis: $\square++ \square+ \square0 \square- \square--$
Bild 61: Abschaltverhalten des SWR 700 bei einem Netz-Impedanzsprung von 0,6Ω.

Pac = 0,5 kW
ΔZ = 0,6 Ω

I_{un} : 5A / Div

U_{netz} : 200V / Div
Zeit: 1s / Div
Ausschaltzeit : t_a = 4,4 s

Bild 62: Abschaltverhalten des SWR 700 bei einem Netz-Impedanzsprung von 0,6Ω.

Pac = 0,7 kW
ΔZ = 0,6 Ω

I_{un} : 5A / Div

U_{netz} : 200V / Div
Zeit: 1s / Div
Ausschaltzeit : t_a = 4,3 s
ENS - Verhalten:

Bild 63: Impedanzmessung des SWR 700 bei Pac = 130W.

Bild 64: Impedanzmessungen des SWR 700 bei Pac = 700 W.
2.9 Top Class 2500/4 Grid II

Technische Daten:

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Wert</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hersteller</td>
<td>ASP Advanced Solar Products AG, CH-8637 Laupen</td>
</tr>
<tr>
<td>Nennleistung Pnac</td>
<td>2,2 kW</td>
</tr>
<tr>
<td>Max. Eingangsleistung Pdc</td>
<td>2,5 kW</td>
</tr>
<tr>
<td>Nennspannung Udc</td>
<td>64 V</td>
</tr>
<tr>
<td>Eingangsspannungsbereich</td>
<td>48...100 V</td>
</tr>
<tr>
<td>Ausgangsspannungsbereich</td>
<td>195...256 V</td>
</tr>
<tr>
<td>Transformator</td>
<td>NF</td>
</tr>
<tr>
<td>Einspeisung</td>
<td>1-phasig</td>
</tr>
<tr>
<td>ENS</td>
<td>nicht vorhanden</td>
</tr>
</tbody>
</table>

Eingangskontrolle und Betrieb bei Leistungsüberangebot:

Funktionstest: Betrieb während 8 Stunden bei Pac = 2,2 kW
Leistungsüberangebot: nicht gemessen

EMV-Verhalten auf der AC-Seite:

Pac = 1,2 kW

Bild 65: Von einem Top Class 2500/4 Grid II auf der AC-Seite produzierte HF-Störspannungen im Vergleich zu den Grenzwerten von EN 55014.

EMV-Verhalten auf der DC-Seite:

Pac = 1,2 kW

Bild 66: Von einem Top Class 2500/4 Grid II auf der DC-Seite produzierte HF-Störspannungen im Vergleich zu den Grenzwerten von EN 55014.
Einschaltleistung und Nennspannungsbereiche:

- Einschaltleistung: \(P_{dc} = 15\, W \)
- Unterspannung: \(\text{nicht gemessen} \)
- Überspannung: \(\text{nicht gemessen} \)

Oberschwingungsströme:

<table>
<thead>
<tr>
<th>Verwendete Norm:</th>
</tr>
</thead>
<tbody>
<tr>
<td>EN60555-2</td>
</tr>
</tbody>
</table>

1. \(Pac = 1,0\, kW \)
2. \(Pac = 1,5\, kW \)
3. \(Pac = 2,0\, kW \)

Wirkungsgrad:

- Wirkungsgrad bei 5% \(P_{nac} \): 84,1%
- Wirkungsgrad bei 10% \(P_{nac} \): 89,8%
- Wirkungsgrad bei 20% \(P_{nac} \): 92,3%
- Wirkungsgrad bei 30% \(P_{nac} \): 92,8%
- Wirkungsgrad bei 50% \(P_{nac} \): 92,6%
- Wirkungsgrad bei 100% \(P_{nac} \): 90,5%

Europäischer Wirkungsgrad: 91,9%

Max. Wirkungsgrad 93,3% bei 40% von \(P_{nac} \)

Bild 68: Wirkungsgrad in Funktion der normierten (bezogen auf Nennleistung) Wechselstromleistung des Top Class 2500/4 Grid II.
MPT-Verhalten:
Der Wechselrichter hat ein effizientes Tracking, welches aber nur mit dem Display des Solargenerator-Simulators untersucht werden konnte. Bei tiefen Leistungen neigt der Arbeitspunkt zu leichten Abweichungen in Richtung Kurzschlussstrom.

Rundsteuersignal-Empfindlichkeit:
1. $U_{ac} = 232\, V, P_{ac} = 0,9\, kW$
 - Testergebnis: $\Box++ \Box+ \Box0 \Box- \Box--$
2. $U_{ac} = 240\, V, P_{ac} = 1,3\, kW$
 - Testergebnis: $\Box++ \Box+ \Box0 \Box- \Box--$
3. $U_{ac} = 250\, V, P_{ac} = 0,6\, kW$
 - Testergebnis: $\Box++ \Box+ \Box0 \Box- \Box--$

Selbstlaufertest:
- Test nach Schweizer Vorschrift (inkl. Netzsimulationsschwingkreis)
- Test nach BRD-Vorschlag (Messung mit vereinfachter ISB-Testschaltung)

Messungen bei:
1. $P_{ac} = 1,5\, kW$
 - Abschaltdauer = 0,5 s
2. $P_{ac} = 1,1\, kW$
 - Abschaltdauer = 0,7 s
3. $P_{ac} = 0,7\, kW$
 - Abschaltdauer = 0,5 s

Testergebnis: $\Box++ \Box+ \Box0 \Box- \Box--$
2.10 Top Class 2500/6 Grid II

Technische Daten:

- **Hersteller:** ASP Advanced Solar Products AG, CH-8637 Laupen
- **Nennleistung Pna:** 2,2 kW
- **Max. Eingangsleistung Pdc:** 2,5 kW
- **Nennspannung Udc:** 96 V
- **Eingangsspannungsbereich:** 72...145 V
- **Ausgangsspannungsbereich:** 195...256 V
- **Transformator:** NF
- **Einspeisung:** 1-phasig
- **ENS:** nicht vorhanden

Eingangskontrolle und Betrieb bei Leistungsüberangebot:

- **Funktionstest:** Betrieb während 8 Stunden bei Pac = 2,2 kW
- **Leistungsüberangebot:** nicht gemessen

EMV-Verhalten auf der AC-Seite:

- **Pac = 1,1 kW**

EMV-Verhalten auf der DC-Seite:

- **Pac = 1,0 kW**

Bild 70: Von einem Top Class 2500/6 Grid II auf der DC-Seite produzierte HF-Störspannungen im Vergleich zu den Grenzwerten von EN 55014.
Einschaltleistung und Nennspannungsbereiche:
Einschaltleistung: \(P_{dc} = 14 \, W \)
Unterspannung: \(U_{ac} = \text{nicht gemessen} \)
Überspannung: \(U_{ac} = \text{nicht gemessen} \)

Oberschwingungsströme:
Verwendete Norm:
1. \(P_{ac} = 1,0 \, kW \)
2. \(P_{ac} = 1,5 \, kW \)
3. \(P_{ac} = 2,0 \, kW \)

Wirkungsgrad:
Wirkungsgrad bei 5% \(P_{nac} \): 85,5%
10% \(P_{nac} \): 88,8%
20% \(P_{nac} \): 91,1%
30% \(P_{nac} \): 92,0%
50% \(P_{nac} \): 91,3%
100% \(P_{nac} \): 88,6%

Europäischer Wirkungsgrad: 89,3%
Max. Wirkungsgrad 92,0 % bei 30 % von \(P_{nac} \)

Bild 72: Wirkungsgrad in Funktion der normierten (bezogen auf Nenndauer) Wechselstromleistung des Wechselrichters Top Class 2500/6 Grid II.
MPT-Verhalten:
Der Wechselrichter besitzt ein schnelles und effektives Tracking. Bei kleinen Leistungen ist der Arbeitspunkt etwas zu weit in Richtung Kurzschlussstrom.

Rundsteuersignal-Empfindlichkeit:
1. $U_{ac} = 230\, \text{V}$ $P_{ac} = 0,25\, \text{kW}$
 ![Symbol für ++] ![Symbol für +] ![Symbol für 0] ![Symbol für -] ![Symbol für --]
2. $U_{ac} = 250\, \text{V}$ $P_{ac} = 0,42\, \text{kW}$
 ![Symbol für ++] ![Symbol für +] ![Symbol für 0] ![Symbol für -] ![Symbol für --]

Selbstlauftest:
- Test nach Schweizer Vorschrift (inkl. Netzsimulationsschwingkreis)
- Test nach BRD-Vorschlag (Messung mit vereinfachter ISB-Testschaltung)

Messungen bei:
1. $P_{ac} = 2,3\, \text{kW}$ Abschaltdauer $= 0,8\, \text{s}$
2. $P_{ac} = 1,5\, \text{kW}$ Abschaltdauer $= 1,0\, \text{s}$
3. $P_{ac} = 0,1\, \text{kW}$ Abschaltdauer $= 1,4\, \text{s}$

Testergebnis: ![Symbol für ++] ![Symbol für +] ![Symbol für 0] ![Symbol für -] ![Symbol für --]

Bild 73: Abschaltverhalten des Top Class 2500/6 Grid II bei einem Netzausfall ($P_{ac} = 2,3\, \text{kW}$).

Pac = 2,3 kW

I_{wn}: 10A / Div

U_{net}: 200V / Div

Zeit: 200ms / Div

Ausschaltzeit: $t_a = 0,8\, \text{s}$
2.11 Top Class 4000 Grid II

Technische Daten:

<table>
<thead>
<tr>
<th>Merkmal</th>
<th>Wert</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hersteller</td>
<td>ASP Advanced Solar Products AG, CH-8637 Laupen</td>
</tr>
<tr>
<td>Nennleistung Pnac</td>
<td>3,3 kW</td>
</tr>
<tr>
<td>Max. Eingangsleistung Pdc</td>
<td>4,0 kW</td>
</tr>
<tr>
<td>Nennspannung Udc</td>
<td>96 V</td>
</tr>
<tr>
<td>Eingangsspannungsbereich</td>
<td>72...145 V</td>
</tr>
<tr>
<td>Ausgangsspannungsbereich</td>
<td>195...256 V</td>
</tr>
<tr>
<td>Transformator</td>
<td>NF</td>
</tr>
<tr>
<td>Einspeisung</td>
<td>1-phasig</td>
</tr>
<tr>
<td>ENS</td>
<td>nicht vorhanden</td>
</tr>
</tbody>
</table>

Eingangskontrolle und Betrieb bei Leistungsüberangebot:

| Funktionstest | Dauerbetrieb an Generator mit 4068 Wp |
| Leistungsüberangebot | nicht gemessen |

EMV-Verhalten auf der AC-Seite:

\[
Pac = 3,1 kW
\]

\[
\text{CISPR-Funkstörspannungsmessung TopClass 4000/6 Grid II AC-Seite}
\]

Bild 74: Von einem Top Class 4000 Grid II auf der AC-Seite produzierte HF-Störspannungen im Vergleich zu den Grenzwerten von EN 55014.

EMV-Verhalten auf der DC-Seite:

\[
Pac = 3,0 kW
\]

\[
\text{CISPR-Funkstörspannungsmessung TopClass 4000/6 Grid II DC-Seite}
\]

Bild 75: Von einem Top Class 4000 Grid II auf der DC-Seite produzierte HF-Störspannungen im Vergleich zu den Grenzwerten von EN 55014.

(Standardversion)
Einschaltleistung und Nennspannungsbereiche:
Einschaltleistung: \(P_{dc} = 26 \, W \)
Unterspannung: \(U_{ac} = 194 \, V \)
Überspannung: \(U_{ac} = 251 \, V \)

Oberschwingungsströme:
Verwendete Norm:
1. \(P_{ac} = 1,5 \, kW \)
2. \(P_{ac} = 2,0 \, kW \)
3. \(P_{ac} = 2,5 \, kW \)

Wirkungsgrad:
Wirkungsgrad bei 5\% \(P_{nac} \): 86,6 \%
10\% \(P_{nac} \): 89,4 \%
20\% \(P_{nac} \): 91,2 \%
30\% \(P_{nac} \): 91,7 \%
50\% \(P_{nac} \): 91,3 \%
100\% \(P_{nac} \): 87,5 \%

Europäischer Wirkungsgrad: 90,2 \%
Max. Wirkungsgrad 91,9 \% bei 35 \% von \(P_{nac} \)

Bild 77: Wirkungsgrad in Funktion der normierten (bezogen auf die Nennleistung) Wechselstromleistung des Top Class 4000 Grid II.
MPT-Verhalten:
Durch die Erfahrungen aus dem Dauerbetrieb an der ISB konnte beim Top Class 4000 Grid II ein effizientes Maximum Power Tracking beobachtet werden.

Rundsteuersignal-Empfindlichkeit:
1. $U_{ac} = 229 \text{ V}$ $P_{ac} = 0,9 \text{ kW}$ ☐ + ☐ 0 ☐ - ☐ --
2. $U_{ac} = 240 \text{ V}$ $P_{ac} = 0,7 \text{ kW}$ ☐ + ☐ 0 ☐ - ☐ --
3. $U_{ac} = 250 \text{ V}$ $P_{ac} = 0,6 \text{ kW}$ ☐ + ☐ 0 ☐ - ☐ --

Selbstlauftest:
☒ Test nach Schweizer Vorschrift (inkl. Netzsimulationsschwingkreis)
☐ Test nach BRD-Vorschlag (Messung mit vereinfachter ISB-Testschaltung)

Messungen bei:
1. $P_{ac} = 2,6 \text{ kW}$ Abschaltdauer $= 1,3 \text{ s}$
2. $P_{ac} = 2,1 \text{ kW}$ Abschaltdauer $= 0,7 \text{ s}$
3. $P_{ac} = 1,5 \text{ kW}$ Abschaltdauer $= 1,0 \text{ s}$
4. $P_{ac} = 0,55 \text{ kW}$ Abschaltdauer $= 0,72 \text{ s}$

Testergebnis: ☐ + ☐ 0 ☐ - ☐ --

Bild 78: Abschaltverhalten des Top Class 4000 Grid II bei einem Netzausfall ($P_{ac} = 1,5 \text{ kW}$).
Ingenieurschule Burgdorf, Labor für Photovoltaik

2.12 Top Class 2500/6 Grid III

Technische Daten:

Hersteller: ASP Advanced Solar Products AG, CH-8637 Laupen
Nennleistung Pnc: 2,25 kW
Max. Eingangsleistung Pdc: 2,5 kW
Nennspannung Udc: 96 V
Eingangsspannungsbereich: 72...145 V
Ausgangsspannungsbereich: 195...256 V
Transformator: NF
Einspeisung: 1-phasig
ENS: nicht vorhanden

Eingangskontrolle und Betrieb bei Leistungsüberangebot:
Funktionstest: Dauerbetrieb an Generator
Leistungsüberangebot: Messung gemäss 1.1 mit P_{MP} = 4,0 kW für 5,5 Stunden

EMV-Verhalten auf der AC-Seite:
Pac = 2,2 kW

EMV-Verhalten auf der DC-Seite:
Pac = 2,2 kW

Bild 80: Von einem Top Class 2500/6 Grid III auf der DC-Seite produzierte HF-Störspannungen im Vergleich zu den Grenzwerten von EN 55014.

Durch den standardmässigen Einbau des DC-Filters (stromkompensierte Ringkerndrossel) konnte der Störpegel gegenüber der Grid II - Serie stark gesenkt werden.
Einschaltleistung und Nennspannungsbereiche:

- Einschaltleistung: \(P_{dc} = 24 \, W \)
- Unterspannung: \(U_{ac} = 194 \, V \)
- Überspannung: \(U_{ac} = 262 \, V \)

Oberschwingungsströme:

Verwendete Norm: EN60555-2, Draft IEC 1000-3-4, Stage 1

1. \(P_{ac} = 1,3 \, kW \)
2. \(P_{ac} = 1,8 \, kW \)
3. \(P_{ac} = 2,25 \, kW \)

Bild 81: Stromoberschwingungen des Top Class 2500/6 Grid III im Vergleich zu den Grenzwerten von EN 60555-2.

Wirkungsgrad:

- Wirkungsgrad bei 5% \(P_{nac} \): 85,0%
- Wirkungsgrad bei 10% \(P_{nac} \): 89,5%
- Wirkungsgrad bei 20% \(P_{nac} \): 92,4%
- Wirkungsgrad bei 30% \(P_{nac} \): 93,1%
- Wirkungsgrad bei 50% \(P_{nac} \): 92,5%
- Wirkungsgrad bei 100% \(P_{nac} \): 89,5%

Europäischer Wirkungsgrad: 91,5%

Max. Wirkungsgrad 93,3 % bei 36 % von \(P_{nac} \)

Bild 82: Wirkungsgrad in Funktion der normierten (bezogen auf Nennleistung) Wechselstromleistung des Wechselrichters Top Class 2500/6 Grid III.
MPT-Verhalten:

![Statischer MPP - Tracking Wirkungsgrad](image)

Bild 83: Statischer MPT-Wirkungsgrad in Funktion der maximal verfügbaren Generatorleistung des Top Class 2500/6 Grid III. Die Messung geht leider nur bis zu einer DC-Leistung von 1,2kW, da zum Zeitpunkt der Messung ein Teil des Solargenerator-Simulators defekt war.

Rundsteuersignal-Empfindlichkeit:

1. Uac = 220 V Pac = 0,7 kW
2. Uac = 230 V Pac = 2,25 kW
3. Uac = 240 V Pac = 0,7 kW

Selbstlauftest:

- Test nach Schweizer Vorschrift (inkl. Netzsimulationsschwingkreis)
- Test nach BRD-Vorschlag (Messung mit vereinfachter ISB-Testschaltung)

Messungen bei :
1. Pac = 2,0 kW Abschaltdauer = 0,9 s
2. Pac = 1,2 kW Abschaltdauer = 3,8 s
3. Pac = 0,2 kW Abschaltdauer = 2,9 s

Testergebnis:

![Abschaltverhalten des Top Class 2500/6 Grid III bei einem Netzausfall](image)

Bild 84: Abschaltverhalten des Top Class 2500/6 Grid III bei einem Netzausfall (Pac = 2,0 kW).
Bild 85: Abschaltverhalten des Top Class 2500/6 Grid III bei einem Netzausfall (Pac = 1,2 kW).

Bild 86: Abschaltverhalten des Top Class 2500/6 Grid III bei einem Netzausfall (Pac = 0,2 kW).
2.13 Top Class 4000 Grid III

Technische Daten:

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Wert</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hersteller</td>
<td>ASP Advanced Solar Products AG, CH-8637 Laupen</td>
</tr>
<tr>
<td>Nennleistung P_{nac}</td>
<td>3,5 kW</td>
</tr>
<tr>
<td>Max. Eingangsleistung P_{dc}</td>
<td>4,0 kW</td>
</tr>
<tr>
<td>Nennspannung U_{dc}</td>
<td>96 V</td>
</tr>
<tr>
<td>Eingangsspannungsbereich</td>
<td>72...145 V</td>
</tr>
<tr>
<td>Ausgangsspannungsbereich</td>
<td>195...256 V</td>
</tr>
<tr>
<td>Transformator</td>
<td>NF</td>
</tr>
<tr>
<td>Einspeisung</td>
<td>1-phasig</td>
</tr>
<tr>
<td>ENS</td>
<td>nicht vorhanden</td>
</tr>
</tbody>
</table>

Eingangskontrolle und Betrieb bei Leistungsüberangebot:

| Funktionstest | Dauerbetrieb an Generator mit 4068 Wp |
| Leistungsüberangebot | noch nicht gemessen |

EMV-Verhalten auf der AC-Seite:

$P_{ac} = 3,0$ kW

Bild 87: Von einem Top Class 4000 Grid III auf der AC-Seite produzierte HF-Störspannungen im Vergleich zu den Grenzwerten von EN 55014.

EMV-Verhalten auf der DC-Seite:

$P_{ac} = 2,7$ kW

Bild 88: Von einem Top Class 4000 Grid III auf der DC-Seite produzierte HF-Störspannungen im Vergleich zu den Grenzwerten von EN 55014.

Durch den standardmässigen Einbau des DC-Filter (stromkompensierte Ringkerndrossel) konnte der Störpegel gegenüber der Grid II - Serie stark gesenkt werden.
Einschaltleistung und Nennspannungsbereiche:
Einschaltleistung: \(P_{dc} = 23 \, \text{W} \)
Unterspannung: \(U_{ac} = 192 \, \text{V} \)
Überspannung: \(U_{ac} = 258 \, \text{V} \)

Oberschwingungsströme:

Verwendete Norm:
1. \(P_{ac} = 1,8 \, \text{kW} \)
 - EN60555-2
 - Draft IEC 1000-3-4, Stage 1
1. \(P_{ac} = 2,6 \, \text{kW} \)
 - ++
 - EN60555-2
1. \(P_{ac} = 3,5 \, \text{kW} \)
 - ++

Wirkungsgrad:

Wirkungsgrad bei
5% \(P_{nac} \): 85,6 %
10% \(P_{nac} \): 90,6 %
20% \(P_{nac} \): 93,0 %
30% \(P_{nac} \): 93,3 %
50% \(P_{nac} \): 92,6 %
100% \(P_{nac} \): 89,8 %

Europäischer Wirkungsgrad: 91,9 %
Max. Wirkungsgrad 93,4 % bei 33 % von \(P_{nac} \)

Bild 90: Wirkungsgrad in Funktion der normierten (bezogen auf Nennleistung) Wechselstromleistung des Top Class 4000 Grid III.
MPT-Verhalten:
Das MPT-Verhalten des Top Class 4000 Grid III wurde noch nicht gemessen.

Rundsteuersignal-Empfindlichkeit:
1. $U_{ac} = 220\, V$ $P_{ac} = 3,5\, kW$ □ □ + □ 0 □ - □ --
2. $U_{ac} = 230\, V$ $P_{ac} = 3,5\, kW$ □ □ + □ 0 □ - □ --
3. $U_{ac} = 240\, V$ $P_{ac} = 3,5\, kW$ □ □ + □ 0 □ - □ --

Selbstlauftest:
□ Test nach Schweizer Vorschrift (inkl. Netzsimulationsschwingkreis)
□ Test nach BRD-Vorschlag (Messung mit vereinfachter ISB-Testschaltung)

Messungen bei:
1. $P_{ac} = 3,0\, kW$ Abschaltdauer = 1,4 s
2. $P_{ac} = 2,0\, kW$ Abschaltdauer = 1,1 s
3. $P_{ac} = 1,2\, kW$ Abschaltdauer = 0,41 s
4. $P_{ac} = 0,55\, kW$ Abschaltdauer = 0,72 s

Testergebnis: □ □ + □ 0 □ - □ --

Bild 91: Abschaltsverhalten des Top Class 4000 Grid III bei einem Netzausfall ($P_{ac} = 3,0\, kW$).
Bild 92: Abschaltverhalten des Top Class 4000 Grid III bei einem Netzausfall (Pac = 2,0 kW).

Pac = 2,0 kW
I$_{\text{w}}$: 10A / Div
U$_{\text{netz}}$: 200V / Div
Zeit: 200ms / Div
Ausschaltzeit: $t_a = 1,1$ s

Bild 93: Abschaltverhalten des Top Class 4000 Grid III bei einem Netzausfall (Pac = 1,2 kW).

Pac = 1,2 kW
I$_{\text{w}}$: 5A / Div
U$_{\text{netz}}$: 200V / Div
Zeit: 100ms / Div
Ausschaltzeit: $t_a = 0,41$ s
3 Zuverlässigkeit der Wechselrichter

Die Wechselrichter Solcon 3400HE, Top Class 4000 Grid II und Top Class 4000 Grid III hatten je einen Hardwaredefekt.

Würde man den EcoPower in dieser Tabelle weglassen, käme man sogar auf einen Wert von nur 0,3 Hardwaredefekten pro Betriebsjahr.

<table>
<thead>
<tr>
<th>Wechselrichter</th>
<th>Betriebsmonate</th>
<th>Hardwaredefekte pro Kalenderjahr</th>
<th>Hardwaredefekte pro Betriebsjahr</th>
</tr>
</thead>
<tbody>
<tr>
<td>Solcon 3400HE</td>
<td>33</td>
<td>0 0 1 1</td>
<td>0,4</td>
</tr>
<tr>
<td>Top Class 4000 Grid II</td>
<td>24</td>
<td>0 1 0 0</td>
<td>0,5</td>
</tr>
<tr>
<td>SolarMax 20</td>
<td>35</td>
<td>1 0 0 0</td>
<td>0,3</td>
</tr>
<tr>
<td>EcoPower 20</td>
<td>34</td>
<td>5 0 3 8</td>
<td>2,8</td>
</tr>
<tr>
<td>Top Class 4000 Grid III</td>
<td>16</td>
<td>- - 1 1</td>
<td>0,8</td>
</tr>
<tr>
<td>Top Class 2500/6 Grid III</td>
<td>5</td>
<td>- - 0 0</td>
<td>0,0</td>
</tr>
<tr>
<td>Top Class 1800</td>
<td>38</td>
<td>- - 0 0</td>
<td>0,0</td>
</tr>
<tr>
<td>Total</td>
<td>185</td>
<td>6 1 5 12</td>
<td>0,8</td>
</tr>
</tbody>
</table>

Tabelle 6: Hardwareausfälle der an der ISB eingesetzten Wechselrichter (Stand Ende 96)
4 Publikationen

5 Literatur

