Strategies to increase the deployment of PV in façades

Christian Renken
Managing Director

CR Energie Sarl,
1868 Collombey, Switzerland
info@crenergie.ch
Strategies to increase the deployment of PV in façades

Service office for renewable energies and energy efficiency

Competences:

• PV in Façades and Architecture
 Design engineering, Execution planning, Normative examination

• Self-consumption of PV energy
 Engineering and Realization of Islanding PV installations

• Expert reports
 Technical assessments, Cost calculations and Damage analyses
Strategies to increase the deployment of PV in façades

Technical aspects to create PV façades

- Limited roof surface on apartment and office buildings
- Regulations of roof greening in cities
- Minimization of negative grid influences by reduction of peak energy

Source: Internet
Strategies to increase the deployment of PV in façades

Direct use of solar energy

- Self-consumption up to 80% without storage system
- Reduction of energy costs by self consumption: 23 – 25 cent / kWh
Strategies to increase the deployment of PV in façades

PV in façades - aesthetic verses performance

Architectural requirements

• Flexible
• Individual
• Combinable
• Competitive

Source: ©csem-viteos_2015
Strategies to increase the deployment of PV in façades

PV panels a competitive cladding material

<table>
<thead>
<tr>
<th>Example</th>
<th>Cladding materials</th>
<th>Price per m² [CHF]</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>wood</td>
<td>220.-</td>
</tr>
<tr>
<td>2</td>
<td>fibre cement</td>
<td>310.-</td>
</tr>
<tr>
<td>3</td>
<td>natural stone</td>
<td>360.-</td>
</tr>
<tr>
<td>4</td>
<td>coloured glass</td>
<td>145.-</td>
</tr>
<tr>
<td>5</td>
<td>aluminium</td>
<td>130.-</td>
</tr>
<tr>
<td>6</td>
<td>acryl glass</td>
<td>155.-</td>
</tr>
<tr>
<td>7</td>
<td>PV panel crystalline - glass/backsheet</td>
<td>200.-</td>
</tr>
<tr>
<td>8</td>
<td>PV panel crystalline - glass/glass translucent</td>
<td>500.-</td>
</tr>
<tr>
<td>9</td>
<td>thin film PV panel - fixed dimensions</td>
<td>80.-</td>
</tr>
</tbody>
</table>

Price indication of cladding materials
Strategies to increase the deployment of PV in façades

Added value of PV in façades

<table>
<thead>
<tr>
<th>Simulated energy balance</th>
<th>kWh</th>
<th>%</th>
<th>Remarks</th>
</tr>
</thead>
<tbody>
<tr>
<td>Annual energy consumption</td>
<td>86'000</td>
<td>100%</td>
<td></td>
</tr>
<tr>
<td>Energy yield PV façade</td>
<td>42'340</td>
<td>49%</td>
<td>average 350 kWp/kWp/a</td>
</tr>
<tr>
<td>Solar coverage of total energy consumption</td>
<td>31'600</td>
<td>37%</td>
<td></td>
</tr>
<tr>
<td>Self-consumption of PV</td>
<td></td>
<td>75%</td>
<td></td>
</tr>
<tr>
<td>Energy feed-in to the grid</td>
<td>10'740</td>
<td>25%</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Profitability</th>
<th>Energy rate</th>
<th>Periode</th>
<th>Amount</th>
</tr>
</thead>
<tbody>
<tr>
<td>Energy costs by the energy provider</td>
<td>0.2485</td>
<td>21'371.00</td>
<td>30</td>
</tr>
<tr>
<td>Reduction of energy costs by self consumption of PV energy</td>
<td>0.2485</td>
<td>7'852.60</td>
<td></td>
</tr>
<tr>
<td>Feed-in tariff</td>
<td>0.08</td>
<td>859.20</td>
<td></td>
</tr>
<tr>
<td>Cost reduction</td>
<td>8'711.80</td>
<td>30</td>
<td>261'354.00</td>
</tr>
<tr>
<td>Final energy costs of the energy provider</td>
<td>12'659.20</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Capital investment of PV façade</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Return on capital</td>
<td>1.70%</td>
<td></td>
<td>261'354.00</td>
</tr>
</tbody>
</table>

Preliminary study of two apartment building with totally 120 kWp PV on all façades
Strategies to increase the deployment of PV in façades

Realization process with different stakeholders

Architect

Technical Information

Consulting Service

Constructing Engineer

Mounting

Building Owner

Technical Information

Solar Engineer

Installation

Structural Engineer

Statics & Fire Safety
Strategies to increase the deployment of PV in façades

Planning process of PV in façades

- Photovoltaic should be integrated in the architectural basic design and NOT afterwards
- Reduction of complexity of panel design and dimensions as well as of the construction and connection plates
Strategies to increase the deployment of PV in façades

Fulfil of technical requirements and standards of façade constructions and electrical installations
Conclusions

• Reaching plus energy standards of real estates by using also the façades for PV
• Increasing of PV self-consumption up to 80% without storage system with a return on capital of 1.5 – 2.0%
• Price rating on the base of costs / m² and not costs / kWp
• Cooperation of architects and engineers starting from the basic design of a project
• Coordination of the stakeholders during the realizations process
Strategies to increase the deployment of PV in façades

Source: ©csem-viteos_2015

www.crenergie.ch